Recap: Computing fe from W_{m} or W_{m}^{\prime} relies on the system being conservative. Where have we used the fact that the system is conservative?

Recall that we used the line integral of $d W_{m}$ or $d W_{m}^{\prime}$ to compute W_{m} or W_{m}^{\prime}, frow which we compute fe. Without the system being conservative, the line integral is not independent of the path taken, and our formulae for W_{m} or W_{m}^{\prime} are not valid. Sofar, we have computed w_{m} or $w_{m n}^{\prime}$, given $\lambda(i, x)$, and then comped $f^{e}=-\frac{\partial W_{m}}{\partial x}=\frac{\partial W_{m}^{\prime}}{\partial x}$.
Now, let's ask a different question. Given λ and $W_{m} / W_{m}{ }^{\prime}$, we ask whether the system is conservative.

Recall that

$$
\begin{aligned}
& d W_{m}=i(\lambda, x) d \lambda-f^{e}(\lambda, x) d x \\
& d w_{m}^{\prime}=\lambda(i, x) d i+f^{e}(i, x) d x
\end{aligned}
$$

Find a condition such that the path integral of $d w_{m}$ or $d w_{m}^{\prime}$ is independent of path. Answer is given by Green's theorem.
Green's Theorem: Suppose $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$
such that

$$
d L=F(x, y) d x+G(x, y) d y .
$$

Thew path integral of $d L$ is independent of the path if and only if

$$
\frac{\partial F}{\partial y}=\frac{\partial G}{\partial x}
$$

- Apply this fo $W_{m} \sum_{1}^{2} W_{m}^{\prime}$.

The system is conservative if and only if
(1)

$$
\frac{\partial i}{\partial x}=-\frac{\partial f^{e}}{\partial \lambda}
$$

or (II) $\frac{\partial \lambda}{\partial x}=\frac{\partial f^{e}}{\partial i}$.
Whew applying this rule, make sure that $f e$ is expressed as a function of (λ, x) when applying (I), and (i, x) when applying (II).
Example: For a system, suppose we have

$$
\begin{aligned}
& i=I_{0}\left[\frac{\lambda / \lambda_{0}+\left(\lambda / \lambda_{0}\right)^{3}}{1+x / a}\right], \\
& f^{e}=\frac{I_{0}}{a}\left[\frac{\frac{1}{2}\left(\lambda^{2} / \lambda_{0}\right)+\frac{1}{4} \lambda^{4} / \lambda_{0}^{3}}{(1+x / a)^{2}}\right] .
\end{aligned}
$$

Is the system conservative? Here, λ_{0}, I_{0} are constants.

$$
\begin{aligned}
\frac{\partial i}{\partial x} & =\frac{\partial}{\partial x}\left\{I_{0}\left[\frac{\lambda / \lambda_{0}+\left(\lambda / \lambda_{0}\right)^{3}}{1+x / a}\right]\right\} \\
& =-\frac{I_{0}}{a} \frac{\lambda / \lambda_{0}+\left(\lambda / \lambda_{0}\right)^{3}}{(1+x / a)^{2}} \\
\frac{\partial f e}{\partial \lambda} & =-\frac{\partial}{\partial \lambda}\left\{\frac{I_{0}}{a}\left[\frac{\frac{1}{2}\left(\lambda^{2} / \lambda_{0}\right)+\frac{1}{4} \lambda^{4} / \lambda_{0}^{3}}{(1+x / a)^{2}}\right]\right\} \\
& =-\frac{I_{0}}{a} \cdot \frac{1}{(1+x / a)^{2}}\left[\frac{1}{2} \not \lambda^{2} / \lambda_{0}+\frac{1}{4} 44 \lambda^{3} / \lambda_{0}^{3}\right] \\
& =-\frac{I_{0}}{a} \cdot \frac{\lambda / \lambda_{0}+\left(\lambda / \lambda_{0}\right)^{3}}{(1+x / a)^{2}} \\
& =\frac{\partial i}{\partial x} .
\end{aligned}
$$

Green's theorem \Rightarrow the system is conservative.

Green's Theorem: Suppose $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ suck that

$$
d L=F(x, y) d x+G(x, y) d y .
$$

You don't Then path integral of $d L$ is independent of the path if and only if

$$
\frac{\partial F}{\partial y}=\frac{\partial G}{\partial x}
$$ need to remember proofs.

Proof sketch of Green's theorem : gt's not a formal prof, but a sketch of why $\partial F / \partial y=\partial G / \partial x$ holds.
Consider two different paths frow (x, y) to $(x+\Delta x, y+\Delta y)$ where $\Delta x, \Delta y$ are small.

Let's integrate di along P_{1} and P_{2}, and equate them.

$$
\int_{P_{1}} d L=\int_{P_{2}} d L
$$

Notice that $\int_{P_{1}} d L \approx F(x, y) \Delta x$

$$
+G(x+\Delta x, y) \Delta y .
$$

Similarly,

$$
\begin{aligned}
& \int_{P_{2}} d l \approx G(x, y) \Delta y \\
&+F(x, y+\Delta y) \Delta x
\end{aligned}
$$

Equating them, we get

$$
\begin{aligned}
& F(x, y) \Delta x+G(x+\Delta x, y) \Delta y \\
& \quad=G(x, y) \Delta y+F(x, y+\Delta y) \Delta x
\end{aligned}
$$

Rearranging the above equation, we get

$$
\frac{G(x+\Delta x, y)-G(x, y)}{\Delta x}=\frac{F(x, y+\Delta y)-F(x, y)}{\Delta y}
$$

Taking $\Delta x \& \Delta y$ to zero, we get

$$
\frac{\partial G}{\partial x}=\frac{\partial F}{\partial y} .
$$

Energy conversion cycles:
Recall that $d W_{m}=i d \lambda-f^{e} d x$. Suppose we go over a cycle C in the state space Then, we have

Assuming the
system is
conservative, this term is zero.

Energy from electrical port "into" the system, denoted by $\left.E F E\right|_{\mathscr{C}}$.

$$
0=\left.E F E\right|_{\varphi}+\left.E F M\right|_{\varphi}
$$

Two different cases may arise:

- $\left.E F E\right|_{\mathscr{C}}>0$ हो $\left.E F M\right|_{\boldsymbol{l}}<0$

This means the system absorbs electrical energy and performs mechanical work.
...The syctewn performs motor action.

- $\left.E F E\right|_{\mathscr{C}}<\left.0 \quad E F M\right|_{\mathscr{C}}>0$

This means the system absorbs mechanical energy and generates electrical energy. .. The system acts as a generator.

Example: Consider a rotational system, described as

$$
\begin{aligned}
& \lambda_{1}\left(i_{1}, i_{2}, \theta\right)=L_{11} i_{1}+M \cos \theta i_{2}, \\
& \lambda_{2}\left(i_{1}, i_{2}, \theta\right)=M \cos \theta i_{1}+L_{22} i_{2} .
\end{aligned}
$$

Let's operate this system over the following cycle in $\left(i_{2}, \theta\right)$ space as shown, whew i is held constant at I_{0}, throughout. Assuming the system to be conservative, state whether the system is behaving as a generator or a motor.

Steps in the computation: calcenlate $E \neq\left. E\right|_{\text {cycle }}$ Alternately,
(1) Compute ω_{w} or ω_{m} frow, λ_{1}, λ_{2}
(2) Compute T^{e} frow ω_{m} or W_{m}^{\prime}.
(3) Compute EFM $\left.\right|_{\text {cyde }}=\oint_{\text {cycle }}-T^{e} d \theta$.

Step 1:

$$
\begin{aligned}
W_{m}^{\prime} & =\int_{0}^{i_{1}} \lambda_{1}\left(\tilde{i}_{1}, 0, \theta\right) d \tilde{i}_{1}+\int_{0}^{i_{2}} \lambda_{2}\left(i_{1}, \tilde{i}_{2}, \theta\right) d \tilde{i}_{2} \\
& =\int_{0}^{i_{1}} L_{11} \tilde{i}_{1} d \tilde{i}_{1}+\int_{0}^{i_{2}}\left(M \cos \theta i_{1}+L_{22} \tilde{i}_{2}\right) d \tilde{i}_{2} \\
& =L_{11} \frac{i_{1}^{2}}{2}+M \cos \theta i_{1} i_{2}+L_{22} \frac{i_{2}^{2}}{2} .
\end{aligned}
$$

Step 2:

$$
T^{e}=\frac{\partial W_{m}{ }^{\prime}}{\partial \theta}=-M \sin \theta i_{i} i_{2}
$$

Step 3:

$$
\begin{aligned}
& \left.E F M\right|_{\text {cycle }}=\oint-T^{e} d \theta \\
& =\int_{a} M \sin \theta i_{1} 1_{2} d \theta \\
& +\int_{b}^{a} M \sin \theta i_{1} i_{2} d \theta+\int_{c}^{=0} M \sin \theta i_{i}^{1} i_{2}^{I_{0}} d \theta+\int_{d}^{I_{0}} M \sin \theta i_{1, i}, i_{2} d \theta
\end{aligned}
$$

$$
\begin{aligned}
\left.\therefore E F M\right|_{\text {cyde }} & =\int_{\theta=\pi}^{\theta=2 \pi} M I_{0}^{2} \sin \theta d \theta \\
& =\left.M I_{0}^{2}(-\cos \theta)\right|_{\theta=\pi} ^{\theta=2 \pi} \\
& =-M I_{0}^{2}(\cos 2 \pi-\cos \pi) . \\
& =-M I_{0}^{2}(1+1) \\
& =-2 M I_{0}^{2} \\
& <0 . \\
\left.\therefore E F M\right|_{\text {cycle }} & <0,\left.\quad E F E\right|_{\text {cyce }}>0,
\end{aligned}
$$

i.e., if absoblos electrical evergy \& provnces mechanical energy.
\Rightarrow It is performing motor action.

- Which one among EFE| cycle and EFM/ cycle will you calculate.

$$
\left.E F E\right|_{\text {cycle }}=\oint_{\text {cpl }} \sum_{k} i_{k} d \lambda_{k} \text {, }
$$

where k raves over all electrical ports. Computing \oint id λ requires inversion of the $\lambda-i$ relation, just the way you need when computing W_{m}. Usually,
the route to compute EFM $\left.\right|_{\text {cycle }}$ is easier.
Example: Suppose $\lambda=L_{0} \cdot \frac{i}{1+x / a}$ for a conservative system that is operated ow the cycle shown in the figure. Is it behaving
 as a generator or a motor?
(1) Computing $W_{m i}^{\prime}$:

$$
\begin{aligned}
W_{m}^{\prime} & =\int_{0}^{i} \lambda(\tilde{i}, x) d \tilde{i}=\frac{L_{0}}{1+x / a} \int_{0}^{i} i d i \\
& =\frac{L_{0} i^{2}}{2(1+x / a)} .
\end{aligned}
$$

(2) Computing fe:

$$
\begin{aligned}
& f^{e}=\frac{\partial W_{m}^{\prime}}{\partial x}=\frac{L_{0} i^{2}}{2} \cdot \frac{-1}{\left(1+\frac{x}{a}\right)^{2}} \cdot \frac{1}{a} . \\
&=\frac{L_{0}}{2 a} \cdot \frac{-1}{\left(1+\frac{x}{a}\right)^{2}} \\
&=\frac{\lambda^{2}\left(1+\frac{x}{a}\right)^{2}}{L_{0}^{2}} \\
& 2 L_{0} a
\end{aligned}
$$

(3) Computing EFM $\left.\right|_{\text {cycle }}=0$

$$
\begin{aligned}
&\left.E F M\right|_{\text {cycle }}=\int_{A B}-f^{e} d x^{=0}+\int_{B C}-f^{e} d x+\int_{C B}-f^{e} d x=0 \\
&+\int_{D A}-f^{e} d x
\end{aligned}
$$

$$
\begin{aligned}
\left.\therefore E F M\right|_{\text {cycle }} & =\int_{B C}-f^{e} d x+\int_{D A}-f^{e} d x \\
& =\int_{x=x_{1}}^{x=x_{2}} \frac{+\lambda_{2}^{2}}{2 L_{0} a} d x+\int_{x=x_{2}}^{x=x_{1}}+\frac{\lambda_{1}^{2}}{2 L_{0} a} d x \\
& =\frac{\lambda_{2}^{2}\left(x_{2}-x_{1}\right)}{2 L_{0} a}+\frac{\lambda_{1}^{2}\left(x_{1}-x_{2}\right)}{2 L_{0} a} \\
& =\frac{\left(x_{2}-x_{1}\right)\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)}{2 L_{0} a}
\end{aligned}
$$

$>0 \ldots$ The system absorbs mechanical energy and produces electrical energy. It is a generator.

Exercise: Repeat it by calculating EFE $l_{\text {cycle }}$ for this problem.

